Closed Measure Zero Sets
نویسندگان
چکیده
We study the relationship between the σ-ideal generated by closed measure zero sets and the ideals of null and meager sets. We show that the additivity of the ideal of closed measure zero sets is not bigger than covering for category. As a consequence we get that the additivity of the ideal of closed measure zero sets is equal to the additivity of the ideal of meager sets.
منابع مشابه
Completeness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملZero sets in pointfree topology and strongly $z$-ideals
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
متن کاملEffective Capacity and Randomness of Closed Sets
We investigate the connection between measure and capacity for the space C of nonempty closed subsets of 2N. For any computable measure μ∗, a computable capacity T may be defined by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of the Choquet’s theorem by showing that every computable capacity may be obtained f...
متن کاملAlgorithmic Randomness and Capacity of Closed Sets
We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be de ned by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an e ective version of Choquet's capacity theorem by showing that every computable capacity may be obta...
متن کاملFinding Subsets of Positive Measure
An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero s-dimensional Hausdorff measure Hs contains a closed subset of non-zero (and indeed finite) Hs-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 58 شماره
صفحات -
تاریخ انتشار 1992