Closed Measure Zero Sets

نویسندگان

  • Tomek Bartoszynski
  • Saharon Shelah
چکیده

We study the relationship between the σ-ideal generated by closed measure zero sets and the ideals of null and meager sets. We show that the additivity of the ideal of closed measure zero sets is not bigger than covering for category. As a consequence we get that the additivity of the ideal of closed measure zero sets is equal to the additivity of the ideal of meager sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness results for metrized rings and lattices

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...

متن کامل

Zero sets in pointfree topology and strongly $z$-ideals

In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...

متن کامل

Effective Capacity and Randomness of Closed Sets

We investigate the connection between measure and capacity for the space C of nonempty closed subsets of 2N. For any computable measure μ∗, a computable capacity T may be defined by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of the Choquet’s theorem by showing that every computable capacity may be obtained f...

متن کامل

Algorithmic Randomness and Capacity of Closed Sets

We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be de ned by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an e ective version of Choquet's capacity theorem by showing that every computable capacity may be obta...

متن کامل

Finding Subsets of Positive Measure

An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero s-dimensional Hausdorff measure Hs contains a closed subset of non-zero (and indeed finite) Hs-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 58  شماره 

صفحات  -

تاریخ انتشار 1992